当前位置: 首页 > news >正文

力扣11.1

2518. 好分区的数目

给你一个正整数数组 nums 和一个整数 k

分区 的定义是:将数组划分成两个有序的 组 ,并满足每个元素 恰好 存在于 某一个 组中。如果分区中每个组的元素和都大于等于 k ,则认为分区是一个好分区。

返回 不同 的好分区的数目。由于答案可能很大,请返回对 109 + 7 取余 后的结果。

如果在两个分区中,存在某个元素 nums[i] 被分在不同的组中,则认为这两个分区不同。

数据范围

  • 1 <= nums.length, k <= 1000
  • 1 <= nums[i] <= 109

分析

逆向思维,由于元素和大于等于 k k k的个数不是很好算,因此我们计算元素和小于 k k k的个数,由于每个数都必须被选择,因此实际我们考虑第一个集合的方案个数即可,这样就可以转化为01背包问题,我们令 d p [ i ] [ j ] dp[i][j] dp[i][j]为前 i i i个数,总和为 j j j的个数,对于第 i i i个数,有两种决策

  • 选第 i i i个数: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i − 1 ] [ j − n u m s [ i ] ] dp[i][j]=dp[i-1][j]+dp[i-1][j-nums[i]] dp[i][j]=dp[i1][j]+dp[i1][jnums[i]]
  • 不选第 i i i个数: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j]=dp[i-1][j] dp[i][j]=dp[i1][j]

对于不选第 i i i个数,实际就是将他放到第二个集合
最后不合法的方案个数为 e r r = ∑ i = 0 k − 1 d p [ n ] [ i ] err=\sum_{i=0}^{k-1}dp[n][i] err=i=0k1dp[n][i](其中n为nums的个数),因为集合一和二若互换元素也算一种方案,最后不合法方案 e r r ∗ 2 err*2 err2
**注意:**若 ∑ i = 0 n − 1 n u m s [ i ] < 2 ∗ k \sum_{i=0}^{n-1}nums[i]<2*k i=0n1nums[i]<2k,此时需要进行特判,因为在计算不合法数组方案的时候最后 e r r ∗ 2 err*2 err2会重复计算
考虑这样的例子, k = 10 , n u m s [ ] = 1 , 2 , 3 , 4 k=10,nums[]={1,2,3,4} k=10,nums[]=1,2,3,4
此时若第一个集合方案有{1}{2}{3}{4}{1,2}{1,3}{1,4}{2,3}{2,4}{3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}{1,2,3,4},对于集合1为{1}的情况,集合2为{2,3,4},但是{2,3,4}也在集合1的方案中,因此实际此时已经包含了集合1:{1}集合2:{2,3,4},和集合1:{2,3,4},集合2:{1}的情况,但是最后err仍然乘了2,所以多算了一倍

代码

typedef long long LL;
class Solution {
public:const static LL N = 1005, mod = 1e9 + 7;LL dp[N][N];LL qpow(LL a, LL n) {LL res = 1;while(n) {if(n & 1) res = res * a % mod;a = a % mod * a % mod;n >>= 1;}return res;}int countPartitions(vector<int>& nums, int k) {int n = nums.size();LL tres = 0;for(auto tk : nums) {tres += tk;}if(tres < 2 * k) return 0;dp[0][0] = 1;for(int i = 0; i < n; i ++ ) {for(int j = 0; j < k; j ++ ) {dp[i + 1][j] = dp[i][j];if(j >= nums[i]) dp[i + 1][j] += dp[i][j - nums[i]];dp[i + 1][j] %= mod;}}LL t = 0;for(int i = 0; i < k; i ++ ) {t += dp[n][i];t %= mod;}t *= 2;LL res = ((qpow(2, n) - t + mod) % mod + mod) % mod; return res;}
};

3259. 超级饮料的最大强化能量

来自未来的体育科学家给你两个整数数组 energyDrinkA 和 energyDrinkB,数组长度都等于 n。这两个数组分别代表 A、B 两种不同能量饮料每小时所能提供的强化能量。

你需要每小时饮用一种能量饮料来 最大化 你的总强化能量。然而,如果从一种能量饮料切换到另一种,你需要等待一小时来梳理身体的能量体系(在那个小时里你将不会获得任何强化能量)。

返回在接下来的 n 小时内你能获得的 最大 总强化能量。

注意 你可以选择从饮用任意一种能量饮料开始。

数据范围

  • n == energyDrinkA.length == energyDrinkB.length
  • 3 <= n <= 105
  • 1 <= energyDrinkA[i], energyDrinkB[i] <= 105

分析

类似于打家劫舍,令dp[i][0]表示第i个数选择A数组的最大能量和,dp[i][1]表示第i个数选择B数组的最大能量和,状态转移如下:

  • d p [ i ] [ 0 ] = m a x ( d p [ i − 2 ] [ 1 ] , d p [ i − 1 ] [ 0 ] ) + A [ i ] dp[i][0]=max(dp[i-2][1],dp[i-1][0])+A[i] dp[i][0]=max(dp[i2][1],dp[i1][0])+A[i]
  • d p [ i ] [ 1 ] = m a x ( d p [ i − 2 ] [ 0 ] , d p [ i − 1 ] [ 1 ] ) + B [ i ] dp[i][1]=max(dp[i-2][0],dp[i-1][1])+B[i] dp[i][1]=max(dp[i2][0],dp[i1][1])+B[i]

考虑先选A和先选B两种情况

代码

typedef long long LL;
class Solution {
public:const static int N = 1e5 + 5;LL dp[N][2];LL maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {int n = energyDrinkA.size();dp[1][0] = energyDrinkA[0];for(int i = 1; i < n; i ++ ) {dp[i + 1][1] = max(dp[i - 1][0], dp[i][1]) + energyDrinkB[i];dp[i + 1][0] = max(dp[i][0], dp[i - 1][1]) + energyDrinkA[i];}LL res = max(dp[n][0], dp[n][1]);cout << dp[n][0] << " " << dp[n][1] << endl;memset(dp, 0, sizeof(dp));dp[1][1] = energyDrinkB[0];for(int i = 1; i < n; i ++ ) {dp[i + 1][0] = max(dp[i - 1][1], dp[i][0]) + energyDrinkA[i];dp[i + 1][1] = max(dp[i][1], dp[i - 1][0]) + energyDrinkB[i];}res = max(res, dp[n][0]);res = max(res, dp[n][1]);return res;}
};

http://www.mrgr.cn/news/63333.html

相关文章:

  • API接口开放与安全管控 - 原理与实践
  • 【elkb】索引生命周期管理
  • 闲一品交易平台:SpringBoot技术的新境界
  • 【机器学习基础】激活函数
  • AI产品经理岗,面试了个211女孩,真的不错
  • kyber算法库打包相关问题
  • 创建线程池时为什么不建议使用Executors进行创建
  • VMware Workstation 17.0虚拟机安装Ubuntu Server 22.04.5 LTS并配置SSH与XFTP详细过程
  • 基于Matlab GUI的说话人识别测试平台
  • 基于SpringBoot的健身房系统的设计与实现(源码+定制+开发)
  • 国标GB28181摄像机接入EasyGBS国标GB28181软件与国标协议对接解决方案
  • 聚“芯”而行,华普微亮相第五届Silicon Labs Works With大会
  • HashSet 和 TreeSet 分别是如何实现去重的
  • Java 批量导出Word模板生成ZIP文件到浏览器默认下载位置
  • 【经验分享】从网页下载内嵌PDF的小妙招,亲测好用
  • OpenEuler 使用ffmpeg x11grab捕获屏幕流,rtsp推流,并用vlc播放
  • React04 State变量 组件渲染
  • fasdsdsadsa
  • 2024高性价比电容笔推荐!盘点实测西圣、绿联、酷盟电容笔!
  • qt QStackedWidget详解
  • Gemini API 和 Google AI Studio 升级,提升搜索准确性和响应能力
  • L 波段射频信号采集回放系统
  • window与Linux基础-1
  • Jenkins You‘re using ‘Known hosts file‘,known_hosts file does not exist
  • QList
  • 图片批量处理神器将每个文件夹中的多张图片拼接,一键实现横向和纵向的长图拼接效果,让你的图片处理更高效