【C++进阶】关联式容器map的使用
1. 序列式容器和关联式容器
前面,我们已经接触过STL中的部分容器如:string、vector、list、deque、array、forward_list等,这些容器统称为序列式容器,因为逻辑结构为线性序列的数据结构,两个位置存储的值之间⼀般没有紧密的关联关系,⽐如交换⼀下,他依旧是序列式容器。顺序容器中的元素是按他们在容器中的存储位置来顺序保存和访问的。
关联式容器也是用来存储数据的,与序列式容器不同的是,关联式容器逻辑结构通常是非线性结构,两个位置有紧密的关联关系,交换⼀下,他的存储结构就被破坏了。顺序容器中的元素是按关键字来保存和访问的。关联式容器有map/set系列和unordered_map/unordered_set系列。
本章节讲解的map底层是红黑树,红黑树是⼀颗平衡⼆叉搜索树。set是key搜索场景的结构, map是key/value搜索场景的结构。
1.1 map和multimap参考文档
- C++ Referencehttps://legacy.cplusplus.com/reference/map/
1.2 map类的介绍
map的声明如下,Key就是map底层关键字的类型,T是map底层value的类型,set默认要求Key⽀持小于⽐较,如果不⽀持或者需要的话可以自行实现仿函数传给第⼆个模版参数,map底层存储数据的内存是从空间配置器申请的。⼀般情况下,我们都不需要传后两个模版参数。map底层是⽤红⿊树实现,增删查改效率是 O ( logN ) ,迭代器遍历是⾛的中序,所以是按key有序顺序遍历的。
template < class Key, // map::key_typeclass T, // map::mapped_typeclass Compare = less<Key>, // map::key_compareclass Alloc = allocator<pair<const Key,T> > //map::allocator_type> class map;
1.3 pair类型介绍
map底层的红黑树节点中的数据,使用pair<Key, T>存储键值对数据。
typedef pair<const Key, T> value_type;
template <class T1, class T2>struct pair
{typedef T1 first_type;typedef T2 second_type;T1 first;T2 second;pair(): first(T1()), second(T2()){}pair(const T1& a, const T2& b): first(a), second(b){}template<class U, class V>pair (const pair<U,V>& pr): first(pr.first), second(pr.second){}
};template <class T1,class T2>
inline pair<T1,T2> make_pair (T1 x, T2 y)
{return ( pair<T1,T2>(x,y) );
}
1.4 map的构造
map的构造我们关注以下几个接口即可。
map的⽀持正向和反向迭代遍历,遍历默认按key的升序顺序,因为底层是⼆叉搜索树,迭代器遍历⾛的中序;支持迭代器就意味着⽀持范围for,map⽀持修改value数据,不⽀持修改key数据,修改关键字数据,破坏了底层搜索树的结构。
// empty (1) ⽆参默认构造
explicit map (const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());// range (2) 迭代器区间构造
template <class InputIterator>
map (InputIterator first, InputIterator last,
const key_compare& comp = key_compare(),
const allocator_type& = allocator_type());// copy (3) 拷⻉构造
map (const map& x);// initializer list (5) initializer 列表构造
map (initializer_list<value_type> il,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());// 迭代器是⼀个双向迭代器
iterator -> a bidirectional iterator to const value_type// 正向迭代器
iterator begin();
iterator end();// 反向迭代器
reverse_iterator rbegin();
reverse_iterator rend();
1.5 map的增删查
map的增删查关注以下⼏个接⼝即可:
map增接⼝,插⼊的pair键值对数据,跟set所有不同,但是查和删的接⼝只⽤关键字key跟set是完全类似的,不过find返回iterator,不仅仅可以确认key在不在,还找到key映射的value,同时通过迭代还可以修改value
Member types
key_type -> The first template parameter (Key)
mapped_type -> The second template parameter (T)
value_type -> pair<const key_type,mapped_type>// 单个数据插⼊,如果已经key存在则插⼊失败,key存在相等value不相等也会插⼊失败
pair<iterator,bool> insert (const value_type& val);// 列表插⼊,已经在容器中存在的值不会插⼊
void insert (initializer_list<value_type> il);// 迭代器区间插⼊,已经在容器中存在的值不会插⼊
template <class InputIterator>
void insert (InputIterator first, InputIterator last);// 查找k,返回k所在的迭代器,没有找到返回end()
iterator find (const key_type& k);// 查找k,返回k的个数
size_type count (const key_type& k) const;// 删除⼀个迭代器位置的值
iterator erase (const_iterator position);// 删除k,k存在返回0,存在返回1
size_type erase (const key_type& k);// 删除⼀段迭代器区间的值
iterator erase (const_iterator first, const_iterator last);// 返回⼤于等k位置的迭代器
iterator lower_bound (const key_type& k);// 返回⼤于k位置的迭代器
const_iterator lower_bound (const key_type& k) const;
1.6 map的数据修改
前⾯我提到map支持修改mapped_type 数据,不⽀持修改key数据,修改关键字数据,破坏了底层搜索树的结构。
map第⼀个支持修改的方式时通过迭代器,迭代器遍历时或者find返回key所在的iterator修改,map还有⼀个⾮常重要的修改接口operator[],但是operator[]不仅仅⽀持修改,还⽀持插⼊数据和查找数据,所以他是⼀个多功能复合接口。
需要注意从内部实现⻆度,map这⾥把我们传统说的value值,给的是T类型,typedef为
mapped_type。而value_type是红⿊树结点中存储的pair键值对值。⽇常使⽤我们还是习惯将这⾥的T映射值叫做value。
Member types
key_type -> The first template parameter (Key)
mapped_type -> The second template parameter (T)
value_type -> pair<const key_type,mapped_type>// 查找k,返回k所在的迭代器,没有找到返回end(),如果找到了通过iterator可以修改key对应的
mapped_type值
iterator find (const key_type& k);// ⽂档中对insert返回值的说明// The single element versions (1) return a pair, with its member pair::first
set to an iterator pointing to either the newly inserted element or to the element with an equivalent key in the map. The pair::second element in the pair is set to true if a new element was inserted or false if an equivalent key already existed.// insert插⼊⼀个pair<key, T>对象// 1、如果key已经在map中,插⼊失败,则返回⼀个pair<iterator,bool>对象,返回pair对象
first是key所在结点的迭代器,second是false// 2、如果key不在在map中,插⼊成功,则返回⼀个pair<iterator,bool>对象,返回pair对象
first是新插⼊key所在结点的迭代器,second是true// 也就是说⽆论插⼊成功还是失败,返回pair<iterator,bool>对象的first都会指向key所在的迭
代器// 那么也就意味着insert插⼊失败时充当了查找的功能,正是因为这⼀点,insert可以⽤来实现
operator[]// 需要注意的是这⾥有两个pair,不要混淆了,⼀个是map底层红⿊树节点中存的pair<key, T>,另⼀个是insert返回值pair<iterator,bool>
pair<iterator,bool> insert (const value_type& val);
mapped_type& operator[] (const key_type& k);// operator的内部实现
mapped_type& operator[] (const key_type& k)
{// 1、如果k不在map中,insert会插⼊k和mapped_type默认值,同时[]返回结点中存储mapped_type值的引⽤,那么我们可以通过引⽤修改返映射值。所以[]具备了插⼊+修改功能// 2、如果k在map中,insert会插⼊失败,但是insert返回pair对象的first是指向key结点的迭代器,返回值同时[]返回结点中存储mapped_type值的引⽤,所以[]具备了查找+修改的功能pair<iterator, bool> ret = insert({ k, mapped_type() });iterator it = ret.first;return it->second;
}
1.7 构造遍历及增删查使用样例
#include<iostream>
#include<map>
using namespace std;int main()
{// initializer_list构造及迭代遍历map<string, string> dict = { {"left", "左边"}, {"right", "右边"},{"insert", "插⼊"},{ "string", "字符串" } };//map<string, string>::iterator it = dict.begin();auto it = dict.begin();while (it != dict.end()){//cout << (*it).first <<":"<<(*it).second << endl;// map的迭代基本都使⽤operator->,这⾥省略了⼀个->// 第⼀个->是迭代器运算符重载,返回pair*,第⼆个箭头是结构指针解引⽤取pair数据//cout << it.operator->()->first << ":" << it.operator->()->second << endl;cout << it->first << ":" << it->second << endl;++it;}cout << endl;// insert插⼊pair对象的4种⽅式,对⽐之下,最后⼀种最⽅便pair<string, string> kv1("first", "第⼀个");dict.insert(kv1);dict.insert(pair<string, string>("second", "第⼆个"));dict.insert(make_pair("sort", "排序"));dict.insert({ "auto", "⾃动的" });// "left"已经存在,插⼊失败dict.insert({ "left", "左边,剩余" });// 范围for遍历for (const auto& e : dict){cout << e.first << ":" << e.second << endl;}cout << endl;string str;while (cin >> str){auto ret = dict.find(str);if (ret != dict.end()){cout << "->" << ret->second << endl;}else{cout << "⽆此单词,请重新输⼊" << endl;}}// erase等接⼝跟set完全类似,这⾥就不演⽰讲解了return 0;
}
1.8 map的迭代器和[]功能样例:
#include<iostream>
#include<map>
#include<string>
using namespace std;int main()
{// 利⽤find和iterator修改功能,统计⽔果出现的次数string arr[] = { "苹果", "西⽠", "苹果", "西⽠", "苹果", "苹果", "西⽠","苹果", "⾹蕉", "苹果", "⾹蕉" };map<string, int> countMap;for (const auto& str : arr){// 先查找⽔果在不在map中// 1、不在,说明⽔果第⼀次出现,则插⼊{⽔果, 1}// 2、在,则查找到的节点中⽔果对应的次数++auto ret = countMap.find(str);if (ret == countMap.end()){countMap.insert({ str, 1 });}else{ret->second++;}}for (const auto& e : countMap){cout << e.first << ":" << e.second << endl;}cout << endl;return 0;
}
#include<iostream>
#include<map>
#include<string>
using namespace std;int main()
{// 利⽤[]插⼊+修改功能,巧妙实现统计⽔果出现的次数string arr[] = { "苹果", "西⽠", "苹果", "西⽠", "苹果", "苹果", "西⽠","苹果", "⾹蕉", "苹果", "⾹蕉" };map<string, int> countMap;for (const auto& str : arr){// []先查找⽔果在不在map中// 1、不在,说明⽔果第⼀次出现,则插⼊{⽔果, 0},同时返回次数的引⽤,++⼀下就变成1次了// 2、在,则返回⽔果对应的次数++countMap[str]++;}for (const auto& e : countMap){cout << e.first << ":" << e.second << endl;}cout << endl;return 0;
}
#include<iostream>
#include<map>
#include<string>
using namespace std;int main()
{map<string, string> dict;dict.insert(make_pair("sort", "排序"));// key不存在->插⼊ {"insert", string()}dict["insert"];// 插⼊+修改dict["left"] = "左边";// 修改dict["left"] = "左边、剩余";// key存在->查找cout << dict["left"] << endl;return 0;
}
3.9 multimap和map的差异
multimap和map的使⽤基本完全类似,主要区别点在于multimap⽀持关键值key冗余,那么
insert/find/count/erase都围绕着⽀持关键值key冗余有所差异,这⾥跟set和multiset完全⼀样,⽐如 find时,有多个key,返回中序第⼀个。其次就是multimap不⽀持[],因为⽀持key冗余,[]就只能⽀持插⼊了,不能⽀持修改。
本篇文章介绍了关联式容器map的相关知识,欢迎评论留言交流!