【NLP】GRU基本结构原理,代码实现
LSTM变种GRU
GRU是LSTM改进的门控循环神经网络,将输入门,遗忘门,输出门变成更新门和重置门。
将细胞状态和隐藏状态合并,只有当前时刻候选状态和当前时刻隐藏状态。
【NLP】LSTM结构,原理,代码实现,序列池化-CSDN博客
模型结构
内部结构
相较于LSTM,GRU的结构更加简洁,参数更少,计算效率更高
可以类比LSTM理解GRU,同样都是门控机制
重置门
决定了保留多上一个时间步的信息和当前的信息合并输入
候选门
最终隐藏状态
代码实现
原生代码实现
import numpy as npclass GRU():def __init__(self,input_size,hidden_size):self.input_size = input_sizeself.hidden_size = hidden_size# 初始化权重参数# 跟新门self.W_z = np.random.randn(hidden_size,hidden_size+input_size)self.b_z = np.zeros(hidden_size)# 重置门self.W_r = np.random.randn(hidden_size,hidden_size+input_size)self.b_r = np.zeros(hidden_size)# 候选隐藏状态self.W_h = np.random.randn(hidden_size,hidden_size+input_size)self.b_h = np.zeros(hidden_size)def tanh(self,x):return np.tanh(x)def sigmoid(self,x):return 1/(1+np.exp(-x))def forward(self,x):# 初始化隐藏状态h_prev = np.zeros((self.hidden_size,))concat_input = np.concatenate([x,h_prev],axis=0)z_t = self.sigmoid(np.dot(self.W_z,concat_input)+self.b_z)r_t = self.sigmoid(np.dot(self.W_r,concat_input)+self.b_r)concat_reset_input = np.concatenate([x,r_t*h_prev],axis=0)h_hat_t = self.tanh(np.dot(self.W_h,concat_reset_input)+self.b_h)h_t = (1-z_t)*h_prev + z_t*h_hat_treturn h_t# 测试数据
input_size = 3
hidden_size = 2
seq_len = 4
x = np.random.randn(seq_len,input_size)gru = GRU(input_size, hidden_size)
all_h = []
for t in range(seq_len):h_t = gru.forward(x[t,:])all_h.append(h_t)print(h_t.shape)all_h = np.array(all_h)
print(all_h.shape)
基于PyTorch的GURcell
import torch
import torch.nn as nn
import numpy as npclass GRUcell(nn.Module):def __init__(self,input_size, hidden_size):super().__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.gru_cell = nn.GRUCell(input_size,hidden_size)def forward(self,x):h_t = self.gru_cell(x)return h_tinput_size = 3
hidden_size = 2
seq_len = 2x = torch.randn(seq_len,input_size)
grucell = GRUcell(input_size, hidden_size)
for t in range(seq_len):out = grucell(x[t])print(out)
基于PyTorch的GRUapi实现
import torch
import torch.nn as nnclass GRU(nn.Module):def __init__(self,input_size, hidden_size):super().__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.gru = nn.GRU(input_size,hidden_size)def forward(self,x):out,_ = self.gru(x)return outinput_size = 3
hidden_size = 2
seq_len = 4
bach_size = 5x = torch.randn(seq_len,bach_size,input_size)gru = GRU(input_size,hidden_size)
out = gru(x)
print(out)
print(out.shape)