当前位置: 首页 > news >正文

一个很有趣测试题目(0930更新一版)

测试要求:

面向对象数据分析案例主程序代码 帮我完成并实现步骤:

1.设计一个类,完成数据的分装

2.设计一个抽象类,定义文件读取的相关功能,并使用子类实现具体功能

3.读取文件,生产数据对象

4.进行数据需求的逻辑计算

5.通过 PyEcharts进行绘图

如下答案:


下面是一个完整的面向对象数据分析案例,包含所有你提到的步骤。我们将以一个简单的销售数据分析为例,假设我们有一个包含销售记录的CSV文件,并且需要读取这个文件,计算总销售额和每个产品的销售数量,最终用PyEcharts绘制柱状图展示每个产品的销售数量。

1. 设计一个类,完成数据的封装

首先,我们设计一个 SaleRecord 类来封装每一条销售记录。
2. 设计一个抽象类,定义文件读取的相关功能,并使用子类实现具体功能

接下来,我们定义一个抽象类 FileReader,并在子类中实现读取CSV文件的功能。
3. 读取文件,生成数据对象

使用上面定义的 CSVFileReader 类来读取文件并生成 SaleRecord 对象列表。
4. 进行数据需求的逻辑计算

计算总销售额和每个产品的销售数量。
5. 通过 PyEcharts 进行绘图

使用 PyEcharts 绘制柱状图展示每个产品的销售数量。


完整代码


# 1. 设计一个类,完成数据的分装  
class SalesData:  def __init__(self, date, unique_id, sales_amount, province):  self.date = date  self.unique_id = unique_id  self.sales_amount = sales_amount  self.province = province  def __str__(self):  return f"Date: {self.date}, ID: {self.unique_id}, Sales: {self.sales_amount}, Province: {self.province}"  ###NEW
def read_file_with_different_encodings(file_path):  encodings = [ 'utf-8']  # 可以根据需要添加更多编码格式  content = None  error = None  for encoding in encodings:  try:  with open(file_path, 'r', encoding=encoding) as file:  content = file.read()  print(f"Successfully read the file with encoding: {encoding}")  break  # 如果成功读取,则跳出循环  except UnicodeDecodeError as e:  error = e  print(f"Failed to read the file with encoding: {encoding}. Error: {e}")  if content is None:  print("Failed to read the file with all attempted encodings.")  if error:  print(f"Last error encountered: {error}")  else:  print("File content:")  print(content)  
### 让用户指定文件路径  
#file_path = input("Please enter the file path: ")  
#read_file_with_different_encodings(file_path)# 2. 设计一个抽象类,定义文件读取的相关功能  
from abc import ABC, abstractmethod  class FileReader(ABC):  @abstractmethod  def read_file(self, file_path,encoding='utf-8',errors='ignore'):  pass  # 设计一个类,完成数据的分装  
class SalesData:  def __init__(self, date, unique_id, sales_amount, province):  self.date = date  self.unique_id = unique_id  self.sales_amount = sales_amount  self.province = province  def __str__(self):  return f"Date: {self.date}, ID: {self.unique_id}, Sales: {self.sales_amount}, Province: {self.province}"  # 设计一个抽象类,定义文件读取的相关功能  
from abc import ABC, abstractmethod  class FileReader(ABC):  @abstractmethod  def read_file(self, file_path):  pass  # 使用子类实现具体功能,并指定使用'utf-8'编码打开文件  
class SalesFileReader(FileReader):  def read_file(self, file_path):  sales_data_list = []  # 在这里指定了'utf-8'编码  with open(file_path, 'r', encoding='utf-8') as file:  lines = file.readlines()  for line in lines:  parts = line.strip().split(',')  if len(parts) == 4:  # Ensure the line has exactly 4 parts  date, unique_id, sales_amount, province = parts  sales_data = SalesData(date, unique_id, int(sales_amount), province)  sales_data_list.append(sales_data)  return sales_data_list  # 现在,你可以使用SalesFileReader类来读取'utf-8'编码的文件了  
# 例如:  
# file_reader = SalesFileReader()  
# sales_data_list = file_reader.read_file('path_to_your_utf8_encoded_file.txt')# 3. 读取文件,生产数据对象  
file_reader = SalesFileReader()  
sales_data_list = file_reader.read_file('201101sales T.txt')  # Assuming the file is named '201101salesT.txt'  # 4. 进行数据需求的逻辑计算(例如,计算总销售额)  
total_sales = sum(data.sales_amount for data in sales_data_list)  
print(f"Total Sales Amount: {total_sales}")  # 5. 通过 PyEcharts进行绘图(例如,按省份显示销售总额)  
from pyecharts.charts import Bar  
from pyecharts import options as opts  # 计算每个省份的销售总额  
province_sales = {}  
for data in sales_data_list:  if data.province in province_sales:  province_sales[data.province] += data.sales_amount  else:  province_sales[data.province] = data.sales_amount  # 准备数据用于绘图  
provinces = list(province_sales.keys())  
sales_amounts = list(province_sales.values())  # 创建条形图  
bar = Bar()  
bar.add_xaxis(provinces)  
bar.add_yaxis("Sales Amount", sales_amounts)  
bar.set_global_opts(title_opts=opts.TitleOpts(title="Sales Amount per Province"))  
bar.render("sales_per_province.html")  # 将图表保存为HTML文件

来吧,慧文同学,交钱吧~!

如果JSON文件能正确读取出来,而TXT文件读不出来,可能存在以下几个原因:

  • 文件格式问题
    • TXT文件可能不是纯文本格式,或者包含了无法识别的字符编码。
    • TXT文件的行格式可能与预期不符,比如使用了不同的换行符(如\r\n\n\r),或者行尾有额外的空格或不可见字符。
  • 数据格式问题
    • TXT文件中的数据可能没有按照预期的格式(如逗号分隔)进行组织。
    • 可能存在缺失值、错误的数据类型(如数字被当作字符串处理),或者数据字段的数量与Record类构造函数所需的参数数量不匹配。
  • 代码问题
    • 在处理TXT文件时,代码可能没有正确处理行尾字符,导致数据被错误地解析或分割。
    • 可能存在异常处理不当的情况,导致在读取或解析TXT文件时出现的错误没有被捕获或正确报告。
  • 文件路径或权限问题
    • 虽然这不太可能是问题的原因(因为JSON文件能读出来),但仍然值得检查TXT文件的路径是否正确,以及程序是否有足够的权限读取该文件。
  • 环境问题
    • 不同的文件可能在不同的环境下被处理(比如不同的操作系统、Python版本或依赖库版本),这可能会影响文件的读取和解析。

为了诊断问题,你可以尝试以下步骤:

  • 检查TXT文件的内容:打开TXT文件,检查数据的格式和完整性。确保每行数据都是按照预期的格式进行组织的,并且没有额外的字符或错误的换行符。
  • 添加调试输出:在读取和解析TXT文件的代码中添加打印语句,输出读取到的每一行数据以及解析后的结果。这可以帮助你定位问题所在的具体位置。
  • 处理异常:确保你的代码中有适当的异常处理逻辑,能够捕获并报告读取或解析文件时出现的错误。
  • 检查Record类的定义:确保Record类的构造函数能够正确接收和处理从TXT文件中读取的数据。
  • 使用绝对路径:尝试使用文件的绝对路径来排除路径问题。
  • 检查Python和库的版本:确保你使用的Python版本和任何相关的库都是最新的,或者至少是与你的代码兼容的版本。

http://www.mrgr.cn/news/39559.html

相关文章:

  • 《Windows PE》3.2 PE头结构-DOS头和DOS块
  • 可视化是工业互联网的核心技术之一,都有哪些应用场景?
  • 基于方差有界的强化学习算法,挖掘稳定 Alpha 因子公式
  • 个人文章合集 - 基础网络相关
  • 浅谈Java之内存缓存
  • 婚恋交友系统该如何做才能做到日进斗金?
  • 火语言RPA流程组件介绍--网页/元素截图
  • TCP的三次握手四次挥手
  • 基于无人机图像的洪水灾害受损评估分割数据集,共4494张高清无人机图像,10个类别,共22GB数据量,主要关注道路,建筑的受损情况。洪水应急救援
  • 全球55%的开发者都在用的分布式云到底怎么样?
  • RTX 5090/5080详细规格曝光 显存喜人 600W功耗没跑
  • 启动服务并登录MySQL9数据库
  • Spring自动装配的5种方式
  • C语言中的日志机制:打造全面强大的日志系统
  • 【数据结构】图的最小生成树
  • 封装了一个iOS水平方向动态宽度layout
  • Python | Leetcode Python题解之第446题等差数列划分II-子序列
  • 与大勇谈修复bug的感想
  • 根父类 Object 的使用与常用方法(equals\toString\clone\finalize\getClass\hashCode....)
  • 基于SSM的会员管理系统【附源码】