YoloV8改进策略:BackBone改进|PoolFormer赋能YoloV8,视觉检测性能显著提升的创新尝试
摘要
在深度学习的广阔领域中,目标检测作为计算机视觉的基石任务之一,始终吸引着研究者的广泛关注。近期,我们大胆尝试将前沿的PoolFormer主干网络引入经典的目标检测框架YoloV8中,这一创新性融合不仅为YoloV8注入了新的活力,更在检测精度与效率上实现了双重飞跃,成为目标检测领域的一股强劲新风。
PoolFormer:轻量高效的新星
PoolFormer,作为MetaFormer家族的一员,以其独特的池化注意力机制脱颖而出。该机制巧妙地将池化操作与注意力机制相结合,既保留了Transformer的强大全局建模能力,又通过池化减少了计算复杂度和内存消耗,实现了计算效率与性能的完美平衡。这一特性使得PoolFormer成为处理大规模视觉数据时的理想选择。
YoloV8:实时检测的佼佼者
YoloV8,作为Yolo系列检测器的最新成员,继承并优化了前代产品的优秀基因,以其出色的实时检测性能和较高的准确率赢得了业界的广泛认可。YoloV8在保持轻量级设计的同时,通过一系列优化策略提升了检测速度和精度,是实时目标检测任务中的佼佼者。
融合之美:PoolFormer+YoloV8
本次研究中,我们创新性地将PoolFormer作为主干网络引入Yo