基于单片机巡迹避障智能小车系统
文章目录
- 前言
- 资料获取
- 设计介绍
- 设计程序
- 具体实现截图
- 设计获取
前言
💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗
👇🏻 精彩专栏 推荐订阅👇🏻
单片机设计精品实战案例✅
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
资料获取
文章底部名片,详细资料联系我。
设计介绍
基于单片机巡迹避障智能小车系统是一个集成了单片机控制、传感器检测、路径识别和避障策略于一体的智能系统。以下是对该系统的详细介绍:
一、系统组成
-
核心控制器
单片机作为整个系统的核心控制器,负责接收传感器数据、执行控制算法,并输出控制指令。常用的单片机型号包括STC89C52、Arduino、Raspberry Pi等,这些单片机具有性能稳定、功耗低、适合实时控制等特点。 -
传感器
寻迹传感器:用于检测地面上的特定路径标记,如黑线。通常使用红外线传感器或光电传感器,通过检测反射光线的变化来确定路径位置。
避障传感器:用于检测小车前方是否存在障碍物,并测量障碍物的距离。常用的避障传感器包括超声波传感器和红外测距传感器。
设计程序
#include <reg52.h>
#define uchar unsigned char
#define uint unsigned int
uchar temp, signal, tt1, t0, t1, t2, t3, t4, t5, t6;sbit jia = P3 ^ 1;
sbit jian = P3 ^ 2;uchar time = 20;void delay_1ms( uint d )
{uint i;while ( d-- )for ( i = 0; i < 75; i++ );
}void delay_50us( unsigned int t ) /* 延时函数 */
{unsigned int j, k;for (; t > 0; t-- ){for ( j = 10; j > 0; j-- ){for ( k = 1; k > 0; k-- );}}
}void motor_run() /* 电机起动 */
{P1 = 0x35;delay_1ms( 220 - time );P1 = 0x53;delay_1ms( time );
}void motor_left() /* 左进 */
{P1 = 0x30;delay_1ms( 220 - time );P1 = 0x00;delay_1ms( time );
}void motor_right() /* 右进 */
{P1 = 0x05;delay_1ms( 220 - time );P1 = 0x00;delay_1ms( time );
}void motor_big_right() /* 粗右进 */
{P1 = 0x55;delay_1ms( 220 - time );P1 = 0x00;delay_1ms( time );
}void motor_big_left()
{P1 = 0x33;delay_1ms( 220 - time );P1 = 0x00;delay_1ms( time );
}void motor_stop() /* 电机停止 */
{P1 = 0x00;
}void key_scan()
{if ( jia == 0 ) /* 判定 */{delay_50us( 100 );/* 延时 */if ( jia == 0 ){time++;if ( time == 200 )time = 200;while ( jia == 0 );/* 自锁 */}}if ( jian == 0 ) /* 判定 */{delay_50us( 100 );/* 延时 */if ( jian == 0 ){time--;if ( time == 20 )time = 20;while ( jian == 0 );/* 自锁 */}}
}void motor_back()
{P1 = 0x53;
}void main()
{t0 = 0;t1 = 0;t2 = 0;t3 = 0;t4 = 0;t5 = 0;t6 = 0;tt1 = 0;EA = 1;ET1 = 1;TR1 = 1;TMOD = 0x01;TH1 = -(1000 / 256);TL1 = -(1000 % 256);while ( 1 ){key_scan();if ( P3 == 0xfe ){motor_back();}else{temp = P2;signal = temp & 0xff; /* 得到红外反向信号 */switch ( signal ){case 0xff: /* 无偏差 */motor_run();t0++;if ( t0 == 10 ){t0 = 0;motor_left();motor_right();}t1 = t2 = t3 = t4 = t5 = t6 = 0;break;case 0xfd: /* 1轮右偏 */motor_big_left();t1++;if ( t1 == 4 ){t1 = 0;motor_left();}t0 = t2 = t3 = t4 = t5 = t6 = 0;break;case 0xef: /* 4轮左偏 */motor_big_right();t2++;if ( t2 == 4 ){t2 = 0;motor_right();}t0 = t1 = t3 = t4 = t5 = t6 = 0;break;case 0xfb: /* 2轮右偏出轨 */case 0xf9: /* 1、2轮右偏 */motor_big_left();t3++;if ( t3 == 4 ){t3 = 0;motor_left();}t0 = t1 = t2 = t4 = t5 = t6 = 0;
/* delay_1ms(10); */break;case 0xdf: /* 5左偏出轨 */case 0xcf: /* 4、5轮左偏 */motor_big_right();t4++;if ( t4 == 4 ){t4 = 0;motor_right();}t0 = t1 = t2 = t3 = t5 = t6 = 0;
/* delay_1ms(10); */break;case 0xfe: /* 0最右偏出轨 */case 0xfa:motor_big_left();t5++;if ( t5 == 1 ){t5 = 0;motor_left();motor_left();}t0 = t1 = t2 = t3 = t4 = t6 = 0;
/* delay_1ms(10); */break;case 0xbf: /* 6最左偏出轨 */case 0x9f:motor_big_right();t6++;if ( t6 == 1 ){t6 = 0;motor_right();motor_right();}t0 = t1 = t2 = t3 = t4 = t5 = 0;
/* delay_1ms(10); */break;case 0xeb: /* 前两传感器压在黑线上 */case 0xdb: /* 后两传感器压在黑线上 */case 0xbe: /* 中间两传感器压在黑线上 */case 0xac: /* 前四传感器压在黑线上 */case 0x9a: /* 后四传感器压在黑线上 */motor_back();delay_1ms( 200 );motor_stop();/* delay_1ms(1000); */default:
/** motor_back();* delay_1ms(50);* motor_left();* motor_right();*/break;}}}
}/*void time1() interrupt 3* {** TH1=-(1000/256);* TL1=-(1000%256);* tt1++;* if(tt1==300)* {* motor_back();* // delay_1ms(1);* tt1=0;* }* } */
具体实现截图
设计获取
文章下方名片联系我即可~
精彩专栏推荐订阅:在下方专栏👇🏻
毕业设计精品实战案例
收藏关注不迷路!!
🌟文末获取设计🌟