当前位置: 首页 > news >正文

C++ 构造函数最佳实践

文章目录

      • 1. 构造函数应该做什么
        • 1.1 初始化成员变量
        • 1.2 分配资源
        • 1.3 遵循 RAII 原则
        • 1.4 处理异常情况
      • 2. 构造函数不应该做什么
        • 2.1 避免做大量的工作
        • 2.2 不要在构造函数中调用虚函数
        • 2.3 避免在构造函数中执行复杂的初始化逻辑
        • 2.4 避免调用可能抛出异常的代码
      • 3. 构造函数的其他最佳实践
        • 3.1 使用`explicit`防止隐式转换
        • 3.2 尽量避免在构造函数中使用`new`
        • 3.3 考虑使用委托构造函数
      • 4. 总结
        • 构造函数应该做:
        • 构造函数不应该做:

C++ 中,构造函数是类的初始化方法,构造的主要目的是为对象分配资源并设置初始状态。在设计和使用构造函数时,最佳实践可以使得代码更健壮、清晰且高效。

本篇文章 即 C++ 构造函数最佳实践。

1. 构造函数应该做什么

1.1 初始化成员变量

构造函数的首要职责是确保对象的所有成员变量都被正确初始化。C++ 提供了构造函数初始化列表,应该优先使用这种方式来初始化成员,而不是在构造函数体中赋值。这是因为初始化列表可以直接调用成员的构造函数,而赋值则会先调用默认构造函数,然后进行赋值,可能会导致额外的性能开销。

示例:

class MyClass {
private:int x;std::string name;
public:// 使用初始化列表进行成员初始化MyClass(int a, const std::string& n) : x(a), name(n) {}
};
1.2 分配资源

构造函数的另一个主要职责是为对象动态分配资源,如动态内存、文件句柄等。在分配资源时,确保使用适当的资源管理机制(如智能指针)来防止资源泄漏。

示例:

class MyClass {
private:std::unique_ptr<int> data;
public:MyClass(int value) : data(std::make_unique<int>(value)) {}  // 使用智能指针管理资源
};
1.3 遵循 RAII 原则

C++ 的资源管理通常基于RAII(Resource Acquisition Is Initialization,资源获取即初始化)原则。构造函数应该负责资源的获取,而析构函数则负责释放资源。通过遵循这一原则,构造函数能够确保对象在其生命周期内持有有效的资源。

示例:

class FileHandler {
private:std::fstream file;
public:FileHandler(const std::string& filename) : file(filename) {if (!file.is_open()) {throw std::runtime_error("Failed to open file");}}~FileHandler() {file.close();  // 析构函数负责资源释放}
};
1.4 处理异常情况

如果构造函数中可能会遇到无法继续初始化的情况(如分配资源失败),应该在构造函数中抛出异常,确保对象不会处于部分初始化状态。一般情况下,构造函数要么成功创建一个有效的对象,要么抛出异常,表明对象创建失败。

示例:

class MyClass {
public:MyClass(int value) {if (value < 0) {throw std::invalid_argument("Negative value is not allowed");}}
};

2. 构造函数不应该做什么

2.1 避免做大量的工作

构造函数的职责是初始化对象,而不是执行复杂的逻辑。构造函数不应该执行大量计算、网络调用、文件操作等繁重任务。如果需要做这些工作,应该将它们放在单独的初始化函数或惰性加载机制中,以避免构造函数的复杂化。

错误示例:

class MyClass {
public:MyClass() {// 错误:构造函数中进行大量计算for (int i = 0; i < 1000000; ++i) {// 复杂计算}}
};

改进:

class MyClass {
public:MyClass() {// 构造函数尽量简单}void initData() {for (int i = 0; i < 1000000; ++i) {// 将复杂逻辑移出构造函数}}
};
2.2 不要在构造函数中调用虚函数

在构造函数中调用虚函数会导致意外行为,因为在构造函数执行期间,派生类的部分还没有被构造,虚函数的多态性机制还没有完全生效。因此,在构造函数中调用虚函数时,实际上调用的是当前类的版本,而不是派生类中的重写版本。

对象构造遵循从基类到派生类的顺序:
①首先调用基类的构造函数,完成基类部分的初始化。
②然后调用派生类的构造函数,完成派生类部分的初始化。

派生类还没有构造完成,先构造了基类,虚函数指针指向基类函数地址,调用执行后调用的就是基类的函数了。
错误示例:

#include <iostream>class Base {
public:Base() {std::cout << "Base constructor called" << std::endl;print();  // 在构造函数中调用虚函数}virtual void print() const {std::cout << "Base::print" << std::endl;}
};class Derived : public Base {
private:int value;
public:Derived(int v) : value(v) {std::cout << "Derived constructor called" << std::endl;}virtual void print() const override {std::cout << "Derived::print, value = " << value << std::endl;}
};int main() {Derived d(10);return 0;
}

编译运行:

[jn@jn build]$ ./a.out
Base constructor called
Base::print
Derived constructor called
[jn@jn build]$ 

改进:

  • 在构造函数中避免使用虚函数。如果需要在对象创建后调用某些逻辑,考虑将其放在专门的初始化函数中或工厂函数中。
2.3 避免在构造函数中执行复杂的初始化逻辑

构造函数应该尽量保持简洁,不应该执行过多的复杂逻辑或初始化。复杂的初始化可以通过专门的初始化函数来实现,特别是在需要初始化多个资源或对象的情况下。

错误示例:

class MyClass {
public:MyClass() {// 错误:构造函数中执行复杂初始化逻辑initializeResources();setupConnections();}private:void initializeResources() {// 复杂资源初始化}void setupConnections() {// 网络或数据库连接初始化}
};

改进:

class MyClass {
public:MyClass() {// 构造函数尽量简单}void initialize() {initializeResources();setupConnections();}private:void initializeResources() {// 复杂资源初始化}void setupConnections() {// 网络或数据库连接初始化}
};
2.4 避免调用可能抛出异常的代码

在构造函数中,如果发生异常,可能会导致对象处于部分初始化状态。虽然 C++ 会在构造函数抛出异常时自动调用析构函数来清理已分配的资源,但避免在构造函数中进行可能抛出异常的操作仍是一个好的实践。如果确实需要处理异常,最好将复杂逻辑放在其他成员函数中。

错误示例:

class MyClass {
public:MyClass() {// 错误:构造函数中调用可能抛出异常的操作performRiskyOperation();}private:void performRiskyOperation() {throw std::runtime_error("Operation failed");}
};

改进:

class MyClass {
public:MyClass() {// 构造函数保持简单}void initialize() {try {performRiskyOperation();} catch (const std::exception& e) {std::cerr << "Error: " << e.what() << std::endl;}}private:void performRiskyOperation() {throw std::runtime_error("Operation failed");}
};

3. 构造函数的其他最佳实践

3.1 使用explicit防止隐式转换

构造函数在某些情况下可能会被用作隐式转换函数,导致意外的行为。为了避免这种情况,使用 explicit 关键字显式禁止构造函数的隐式转换。

示例:

class MyClass {
public:explicit MyClass(int value) {// 禁止隐式转换}
};MyClass obj = 10;  // 错误:隐式转换被 explicit 禁止
3.2 尽量避免在构造函数中使用new

尽量避免在构造函数中直接使用 new 分配动态内存,而是使用智能指针(如 std::unique_ptrstd::shared_ptr)来管理资源,避免内存泄漏。

错误示例:

class MyClass {
private:int* data;
public:MyClass() {data = new int[100];  // 错误:直接使用 new 分配内存}~MyClass() {delete[] data;}
};

改进:

class MyClass {
private:std::unique_ptr<int[]> data;  // 使用智能指针管理内存
public:MyClass() : data(std::make_unique<int[]>(100)) {}
};
3.3 考虑使用委托构造函数

C++11 引入了委托构造函数的概念,可以减少代码重复,避免在多个构造函数中进行相同的初始化操作。

示例:

class MyClass {
private:int x;std::string name;
public:MyClass(int a) : MyClass(a, "Default") {}  // 委托给另一个构造函数MyClass(int a, const std::string& n) : x(a), name(n) {}
};

4. 总结

构造函数应该做:
  1. 初始化成员变量,尤其是通过初始化列表(注意初始化顺序问题)。
  2. 分配资源,如动态内存、文件句柄等,并遵循 RAII 原则。
  3. 处理异常情况,在无法初始化时抛出异常,避免部分初始化对象。
构造函数不应该做:
  1. 不要做大量工作,如复杂的计算或 I/O 操作。
  2. 不要调用虚函数,因为在构造期间虚函数的多态性机制尚未生效。
  3. 避免复杂的初始化逻辑,这些逻辑可以放在单独的函数中。
  4. 避免调用可能抛出异常的代码,并确保异常得到适当处理。

http://www.mrgr.cn/news/33116.html

相关文章:

  • AUTOSAR汽车电子嵌入式编程精讲300篇-基于CAN总线的气动控制
  • 【linux-Day4】linux的基本指令<下>
  • 网络丢包定位记录(三)
  • XXL-JOB环境搭建
  • github加速下载@powershell命令行内加速下载github资源@获取镜像加速后的链接
  • 【成品论文】2024年华为杯研赛E题25页高质量成品论文(后续会更新
  • 代码编辑器 —— Notepad++ 实用技巧
  • 51单片机——独立按键
  • 一个安卓鸿蒙化工具
  • 银河麒麟桌面操作系统V10(SP1)离线升级SSH(OpenSSH)服务
  • CompletableFuture的allOf一定不要乱用!血泪史复盘
  • 01-ZYNQ linux开发环境安装,基于Petalinux2023.2和Vitis2023.2
  • go 安装依赖超时
  • msvcp140.dll0丢失的解决方法,总结6种靠谱的解决方法
  • Spring Boot实战:使用策略模式优化商品推荐系统
  • 数据结构:内部排序
  • Spring Boot实战:使用@Import进行业务模块自动化装配
  • Jboss Administration Console弱⼝令
  • 2024年华为杯-研赛F题论文问题一二讲解+代码分享
  • 计算机毕业设计 基于Python的校园个人闲置物品换购平台 闲置物品交易平台 Python+Django+Vue 前后端分离 附源码 讲解 文档