当前位置: 首页 > news >正文

模型参数选择——交叉验证

在模型训练中,使用交叉验证(Cross-Validation)是确保参数选择合理、模型泛化能力强的有效方式。具体来说,通过 网格搜索(Grid Search)随机搜索(Randomized Search) 与交叉验证结合,可以系统地尝试不同的参数组合并评估模型性能。

下面具体讲解如何使用交叉验证来选择最优的 penaltysolver 参数,从而提升模型的准确率。

步骤 1:准备数据

假设你已经有了自变量(X)和因变量(y),并且数据已经被预处理好(如归一化、缺失值处理等)。使用 train_test_split 来划分训练集和测试集:

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

步骤 2:定义参数网格

为了选择最佳的 penaltysolver,我们可以先定义一个参数网格,包含不同的参数组合。比如针对 penaltysolver 参数,你可以定义如下网格:

param_grid = {'penalty': ['l1', 'l2'],  # L1 和 L2 正则化'solver': ['liblinear', 'saga', 'lbfgs'],  # 选择支持 L1 和 L2 正则化的优化器'max_iter': [1000, 2000]  # 迭代次数
}

步骤 3:使用 GridSearchCV 进行交叉验证

GridSearchCV 会自动遍历你定义的参数组合,并在每个组合上进行交叉验证,最终返回表现最好的参数组合。

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression# 定义逻辑回归模型
model = LogisticRegression(multi_class='ovr')# 定义 GridSearchCV,使用5折交叉验证
grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy')# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train)# 输出最好的参数组合
print("Best parameters found: ", grid_search.best_params_)
print("Best cross-validation score: {:.2f}".format(grid_search.best_score_))

步骤 4:在测试集上评估最优模型

在找到最优的参数组合后,我们可以在测试集上评估这个模型的性能,看看交叉验证选出的最优参数是否能提升模型的准确率。

# 使用最优参数的模型在测试集上评估
best_model = grid_search.best_estimator_
test_score = best_model.score(X_test, y_test)print("Test accuracy with best parameters: {:.2f}".format(test_score))

步骤 5:调整或扩展参数网格

如果发现模型的准确率还有提升空间,可以考虑:

  • 增加更多参数组合:例如,调整 C 参数(正则化强度)、multi_class 参数(选择 'multinomial')。
  • 更换优化器或其他超参数:例如,增加 'newton-cg''sag' 作为候选优化器。
param_grid_extended = {'penalty': ['l1', 'l2'],'solver': ['liblinear', 'saga', 'lbfgs', 'newton-cg'],'C': [0.01, 0.1, 1, 10],  # 正则化强度'max_iter': [1000, 2000],'multi_class': ['ovr', 'multinomial']  # 多分类方式
}

然后重复上述的 GridSearchCV 步骤来进一步优化模型。

总结

  1. 定义参数网格:指定你要调优的参数(如 penaltysolver)。
  2. 使用交叉验证进行搜索:通过 GridSearchCV 遍历每个参数组合,并进行多次训练评估,找到最优参数组合。
  3. 在测试集上评估模型:用最优参数组合的模型预测测试集,评估准确率。
  4. 根据需要扩展网格或调整其他参数:进一步优化模型。

这样做的好处是可以确保参数的选择不是基于特定的训练集,而是经过交叉验证后具有较好的泛化能力,从而提高模型的准确率。


http://www.mrgr.cn/news/31174.html

相关文章:

  • 基于vue框架的的商品销售平台p2l5b(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。
  • TP6将HTML转换为PDF文件,非法UTF-8编码和中文乱码问题
  • Ingress nginx 公开TCP服务
  • 华为交换机配置命令
  • 【贪心算法】贪心算法三
  • 两个有趣的小东西(qt和类型转换)
  • Google Play金融类应用上了又被下,怎么搞定设备短信权限问题?
  • neo4j导入csv数据
  • linux内核 devtmpfs介绍
  • 【Python常用模块】_cx_Oracle模块详解
  • PyQt5中使用文件选择对话框指南
  • nodejs 012:Babel(巴别塔)语言转换与代码兼容
  • PDF样本册如何分享到朋友圈
  • Android View 的绘制流程
  • 复制这个盒子内容的时候,会触发这个盒子的点击事件
  • C#自定义曲线绘图面板
  • Xinstall助力App推广,下载自动绑定提升转化率
  • 15.多线程概述一(下篇)
  • 如何限制任何爬虫爬取网站的图片
  • 无人机之4G模块的主要功能和优势
  • 【时时三省】(C语言基础)指针笔试题1
  • 专利管理系统如何确保专利资产持续有效?
  • 技术老总眼中的品宣与促销:挑战与对策
  • 【算法竞赛】栈
  • QT的dropEvent函数进入不了
  • ASPICE认证、咨询和培训的价值是什么?