Acwing Hash表
哈希表的作用:把一个比较大的空间,通过一个函数映射到一个比较小的空间
一般做哈希运算时,取一个质数作为模,会使得冲突的概率降低。
哈希表的冲突解决方法:
- 拉链法
- 开放寻址法
下面详细介绍这两种方法的原理及其实现:
1.拉链法
创建一个数组h[],插入一个值时通过哈希函数映射到数组对应位置,每个位置维护一个链表,映射到相同位置加入当前链表中。
数组h[i]类似于链表的头指针,存储的是其下链表的第一个结点x的数组下标**,而不是结点的值x,取值范围0~N,所以可以让数组h的默认值为-1,以此判断该位置下是否为空
- 插入操作:采用头插法,根据哈希函数计算哈希值,每次冲突的值,插入到链表的第一个位置;
- 查询操作:根据哈希值找到对应头指针即对应链表,再对链表遍历判断;
- 删除操作:删除操作并不是真正的删除该元素,而是设置一个标记值,来表示该位置的值已被删除(用得少)。
板子:
const int N = 100003; // 大于10^5的最小质数,作为哈希表的大小int h[N], e[N], ne[N], idx = 0;
// h[] 用于存储每个哈希值对应的链表头结点
// e[] 用于存储插入的值
// ne[] 用于存储每个元素的下一个节点的索引
// idx 是当前插入元素的索引// 插入操作,使用拉链法实现
void insert(int x){int k = (x % N + N) % N; // 计算哈希值,处理负数时确保结果为正数e[idx] = x; // 将x存入数组e,idx是当前存储的索引ne[idx] = h[k]; // 将当前元素的下一个节点设置为链表的第一个节点h[k] = idx++; // 将哈希表h[k]指向当前元素,并更新idx
}// 查找操作,查找元素x是否存在
bool find(int x){int k = (x % N + N) % N; // 计算哈希值for(int i = h[k]; i != -1; i = ne[i]){ // 遍历哈希表k对应的链表if(e[i] == x) return true; // 如果找到,返回true}return false; // 没找到,返回false
}
哈希表常用取余法,代码实现找一个大于等于N且最小的质数:
int get_Prime(int N){for(int i = N;;i++){bool flag = true;for(int j = 2; j * j <= i;j ++){if(i % j== 0){flag = false;break;}}if(flag){return i;break;}}
}
2.开放寻址法:
开放寻址法:当冲突发生时,使用某种探测算法(得出一个偏移量)在散列表中寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到。探测法有线性探测法、平方探测法、双散列法、伪随机序列。这里直接使用线性探测法,即冲突则自增1。
数组h[]存储的时具体的节点值x,而x的取值范围是 − 1 0 9 − − 1 0 9 -10^9 --10^9 −109−−109.故应该让数组x的默认值不在x的取值范围内(定义null = 0x3f3f3f3f),这样才好判断h[k[位置上是否为空(注意和拉链法区分)
- 查找和查询操作合为一个find()函数:首先根据哈希函数计算的哈希值查找当前元素是否在初始位置。若该位置为空,则在这个位置插入该元素;若不为空且与该元素不等,则向后继续查找,直到找到该元素或有空位置则插入该元素。最后返回该位置。
板子:
const int N = 200003, null = 0x3f3f3f3f; // N为哈希表的大小,null为标志无效值的常量
int h[N]; // 哈希表,存储元素// 开放寻址法查找函数
// 如果x在哈希表中,返回x的下标;
// 如果x不在哈希表中,返回x应该插入的位置
int find(int x) {int k = (x % N + N) % N; // 计算哈希值,处理负数使其为正while(h[k] != null && h[k] != x) { // 当位置不为空且不等于x时,进行线性探测k++; // 如果发生冲突,继续探测下一个位置if(k == N) k = 0; // 如果到达末尾,回到哈希表开头}return k; // 返回找到的插入位置或x所在的位置
}
好的,下面给出一道题目,我们采用两种方法解答:
Acwing 840. 模拟散列表
输入样例:
5
I 1
I 2
I 3
Q 2
Q 5
输出样例:
Yes
No
具体实现(2种):
//拉链法
#include <iostream>
#include <cstring>using namespace std;const int N = 100003; // 大于10^5的最小质数,作为哈希表的大小int h[N], e[N], ne[N], idx = 0;
// h[] 用于存储每个哈希值对应的链表头结点
// e[] 用于存储插入的值
// ne[] 用于存储每个元素的下一个节点的索引
// idx 是当前插入元素的索引// 插入操作,使用拉链法实现
void insert(int x){int k = (x % N + N) % N; // 计算哈希值,处理负数时确保结果为正数e[idx] = x; // 将x存入数组e,idx是当前存储的索引ne[idx] = h[k]; // 将当前元素的下一个节点设置为链表的第一个节点h[k] = idx++; // 将哈希表h[k]指向当前元素,并更新idx
}// 查找操作,查找元素x是否存在
bool find(int x){int k = (x % N + N) % N; // 计算哈希值for(int i = h[k]; i != -1; i = ne[i]){ // 遍历哈希表k对应的链表if(e[i] == x) return true; // 如果找到,返回true}return false; // 没找到,返回false
}int main(){memset(h, -1, sizeof h); // 初始化哈希表h,令所有值为-1,表示链表为空int n; // 操作数cin >> n;while(n--){ // 处理n个操作char op[2]; // 操作符int x; // 操作的数值cin >> op >> x;if(op[0] == 'I') insert(x); // 插入操作else { // 查找操作if(find(x)) puts("Yes"); else puts("No"); }}return 0;
}
//开放寻址法
#include <iostream>
#include <cstring>using namespace std;const int N = 200003, null = 0x3f3f3f3f; // N为哈希表的大小,null为标志无效值的常量
int h[N]; // 哈希表,存储元素// 开放寻址法查找函数
// 如果x在哈希表中,返回x的下标;
// 如果x不在哈希表中,返回x应该插入的位置
int find(int x) {int k = (x % N + N) % N; // 计算哈希值,处理负数使其为正while(h[k] != null && h[k] != x) { // 当位置不为空且不等于x时,进行线性探测k++; // 如果发生冲突,继续探测下一个位置if(k == N) k = 0; // 如果到达末尾,回到哈希表开头}return k; // 返回找到的插入位置或x所在的位置
}int main() {//memset按字节赋值,int4个字节,每个字节赋值0x3f,则h默认值就为0x3f3f3f3f 即nullmemset(h, 0x3f, sizeof h); // 初始化哈希表,所有位置都标记为nullint n; // 操作次数cin >> n;while(n--) {char op[2]; // 操作类型int x; // 操作的数值cin >> op >> x;int k = find(x); // 通过find函数得到x的位置if(op[0] == 'I') h[k] = x; // 插入操作,将x放入找到的位置else {if(h[k] != null) puts("Yes"); // 如果h[k]不是null,说明x在哈希表中else puts("No"); // 否则x不在哈希表中}}return 0;
}
以上两种方法各有利弊,开放寻址法通过线性探测有效解决哈希冲突,适合负载率较低的哈希表。在实际操作中,开放寻址法避免了链表(拉链法)的额外存储开销,但在负载率高时可能会导致较多的探测,影响性能。个人倾向于开放寻址法,只需要开一个数组~